B.Sc. 3rd Semester (Honours) Examination, 2019-20
 PHYSICS

Course ID : 32413
Course Code : SH/PHS/303/C-7

Course Title: Digital System and Applications

Time: 1 Hour 15 Minutes

Full Marks: 25
The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Section-I

Answer any five of the following:

1. (a) Convert the hexadecimal number C5E2 into a binary number.
(b) Prove that $\overline{A B}+\bar{A}+A B=1$.
(c) Explain the term 'SISO' for a shift register.
(d) "A negative logic OR gate is equivalent to a positive logic AND gate"- Justify.
(e) A device is needed to monitor the simultaneous occurrence of low states in two separate lines and to produce a high output as an indication. What will be the device?
(f) Define linear ICs with example.
(g) Write two applications of 555 timer.
(h) Substract (12) $)_{10}-(21)_{10}$ using 2's complement method.

Section-II

Answer any two questions: $\quad 5 \times 2=10$
2. (a) What do you mean by digital comparator?
(b) With truth table and proper explanation draw the circuit diagram of a single bit comparator.

$$
1+4=5
$$

3. Draw the circuit diagram of MSJK flip-flop using NAND gate only. Explain how can 'race around condition' can be solved using MSJK flip-flop. What is D-flip-flop? $1+3+1=5$
4. What is a Synchronous counter? What is its advantage over asynchronous counter? Draw the block diagram of a 3-bit synchronous counter and explain its operation.
$1+1+3=5$
5. Distinguish between OR and EX-OR gate. Why EX-OR gate is called a coincidence checker? How X-OR gate is converted into EX-NOR gate?

Section-III

Answer any one question:
$10 \times 1=10$
6. (a) Draw a 8 word $\times 4$ bit ROM array using decoder and diodes. Explain its operation.
(b) With block diagram of full adder and EX-OR gates, draw a circuit of 4 bit adder substractor. Explain its operation.
$(2+4)+4=10$
7. (a) Draw a BCD to decimal decoder circuit and explain its operation.
(b) Show that $(A \oplus B) \oplus C=A \oplus(B \oplus C)$.
(c) Simplify the Boolean expression $Y=\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C$ using Karnaugh Map.

